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Abstract

The Neutralized Drift Compression Experiment-II (NDCX-II) is an induction linac that generates intense pulses of 1.2 MeV helium ions for
heating matter to extreme conditions. Here, we present recent results on optimizing beam transport. The NDCX-II beamline includes a 1-m-long
drift section downstream of the last transport solenoid, which is filled with charge-neutralizing plasma that enables rapid longitudinal
compression of an intense ion beam against space-charge forces. The transport section on NDCX-II consists of 28 solenoids. Finding optimal
field settings for a group of solenoids requires knowledge of the envelope parameters of the beam. Imaging the beam on the scintillator gives the
radius of the beam, but the envelope angle is not measured directly. We demonstrate how the parameters of the beam envelope (radius, envelop
angle, and emittance) can be reconstructed from a series of images taken by varying the B-field strengths of a solenoid upstream of the
scintillator. We use this technique to evaluate emittance at several points in the NDCX-II beamline and for optimizing the trajectory of the beam
at the entry of the plasma-filled drift section.
© 2018 Science and Technology Information Center, China Academy of Engineering Physics. Publishing services by Elsevier B.V. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

NDCX-II is a 10-m-long pulsed induction ion accelerator
which produces short (2e30 ns FWHM) intense pulses of
1.2 MeV helium ions. Presently, the device is capable of
delivering a fluence of 0.7 J/cm2 and studying the radiation
damage in materials [1]. In parallel, an effort to tune the
accelerator to increase fluence on target is underway.

The NDCX-II beamline is illustrated in Fig. 1. The helium
beam is extracted from a multicusp filament-driven plasma ion
source [2] at an initial energy of 135 keV. As the ion bunch
travels through the beamline, it passes through 12 induction
cells that accelerate the beam to a final energy of 1.2 MeV.
Besides accelerating the beam, the induction cells are
designed to apply a head-to-tail velocity tilt to the ion bunch,
i.e., the head of the bunch is decelerated and the tail is
accelerated. This results in longitudinal compression of the
bunch and a corresponding increase in beam current and line
charge density.

The 12 accelerating induction cells are embedded in a 28-
solenoid transport lattice. After the transport lattice, the beam
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passes through a 1-m-long plasma-filled drift column where it
undergoes the final longitudinal compression stage before the
target. The plasma is generated by a Ferroelectric Plasma
Source (FEPS) [3]. The plasma neutralizes the space charge of
the beam [4], which enables a high degree (~�10) of the
longitudinal compression. Immediately downstream of the
FEPS, the beam enters an 8-T 10-cm-long final focus solenoid
(FFS), which focuses the beam onto the target. The bore radius
of the final focus solenoid is small (R ¼ 2 cm) compared to the
radius of the beam pipe in the accelerator (4 cm). Passing the
beam through the small bore of the FFS with minimal scraping
losses is a significant challenge, as we will describe later.

The NDCX-II project pushes the capabilities of induction
linac technology to develop a compact, low-cost approach to
generating extremely high ion beam fluence with short (ns)
pulse duration. The beam dynamics on NDCX-II is inherently
complex for a number of reasons. The successive applications of
the longitudinal velocity tilt result in growing complexity of the
longitudinal phase-space of the beam. This velocity spread af-
fects transverse dynamics because the focusing strength of the
transport solenoids is a function of the particle velocity. The
effect of space charge forces (generally nonlinear) is further
complicated by the fact that both the bunch current and energy
increase during the propagation, resulting in non-monotonic

variation of the beam perveance QfI=V3=2. Lastly, some sec-
tions of the accelerator are filled with plasma to neutralize the
space-charge of the beam, which rapidly reduces the self field of
the beam and introduces further complexity.

As a result of these factors, source-to-target simulations can
easily diverge from experimental reality. This especially
concerns transverse beam parameters, such as the radius and
angle of the beam envelope (r, dr/dz). Direct measurements of
the transverse phase space distribution are difficult due to
limited diagnostic access in a crowded lattice of a compact
accelerator. However, reliable knowledge of the envelope pa-
rameters is often necessary for tuning the solenoid lattice. The
previously-mentioned problem of optimizing the trajectory of
the beam in the 1-m-long plasma-filled drift section is one
example.

While tackling these issues on NDCX-II, scintillator im-
aging has emerged as a powerful and flexible diagnostic

technique. Reliance on scintillators (instead of 2-slit emittance
scanners, for instance) is largely the result of practical con-
cerns. Scintillators can be inserted into the beam with minimal
(few cm) longitudinal “real estate” requirements. A single
intensified CCD camera positioned at the downstream end of
the accelerator can image scintillators at several z-locations to
measure the transverse current density j(x,y) of the beam.
Nonetheless, most of the beamline is inaccessible to direct
measurements due to the limited number of diagnostic access
ports. Furthermore, the envelope angle dr/dz cannot be
measured directly without inserting additional hardware (such
as a movable slit in front of the scintillator plane) into the
beam.

The amount of useful information generated by the di-
agnostics can be increased by measuring the response of the
system to its controls. For instance, the spot size of the beam
can be measured as a function of the solenoid field strength.
Then, an inverse problem can be formulated: given some
measured dependence of beam radius on solenoid strength
R(B) at z ¼ L, what are the parameters of the beam envelope (r,
dr/dz) at z ¼ 0? Solving this problem requires defining a
model to calculate the experimentally-measurable quantities
as a function of the unknown variables. Then, unknown model
parameters can be found by numerical optimization methods.

In the present article, we describe the technique developed
on NDCX-II for reconstructing beam parameters inaccessible
to direct measurement. The reconstruction technique is based
on measuring the spot size of the beam as a function of the
solenoid strength. Extracting an effective beam radius from the
data is accomplished by identifying and exploiting self-
similarity in the scintillator images. An envelope model with
3 unknown parameters (beam radius, angle, and perveance) is
matched to the data generated by a particle-swarm optimiza-
tion algorithm. The validity of reconstructed parameters has
been confirmed through agreement with other diagnostics. Our
reconstruction technique is similar in spirit to the well-known
“solenoid scan” approach to measuring emittance, where
emittance is determined from the minimum beam radius
downstream of a solenoid lens. However, in contrast with
some of the previous work on this subject (e.g. Ref. [5]), the
complete shape of the radius vs. B-field curve is taken into

Fig. 1. NDCX-II beamline. The accelerator is 10-m-long from source to target. The Heþ ion beam is extracted from a multicusp plasma ion source and transported

through a 28-solenoid lattice towards the Ferroelectric Plasma Source (FEPS). Inside the FEPS, a volume plasma is generated that neutralizes the space-charge of

the beam and enables longitudinal and transverse compression of the ion pulse. The locations where the scintillator measurements of the beam spot size were taken

are indicated in this Figure.
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account, similar to the tomographic phase-space reconstruc-
tion techniques for particle beams [6].

2. Reconstruction technique

The reconstruction technique presented here was developed
to address practical issues encountered on NDCX-II while
tuning the accelerator for higher performance. Two such is-
sues, and their resolution via the reconstruction method, are
described in this article. They are intended to serve as exam-
ples to illustrate the general approach and its potential utility
for experimental accelerator physics.

The first issue concerns optimizing the trajectory of the
beam through the FEPS to minimize scraping on the 4-cm
diameter entrance aperture of the final focusing solenoid
(FFS). This requires finding optimal settings for the 3 transport
solenoids immediately upstream of the FEPS (#26e#28).
Within the assumptions of the envelope model, scraping may
be attributed to the effect of large beam emittance, perveance,
or beam centroid offset. Otherwise, a setting of the last
transport solenoid (#28) could be found that matches the beam
into the FFS without scraping for any reasonable beam en-
velope parameters (r, dr/dz) at the entrance of solenoid #28. In
the case of emittance (or perveance) limited transport, it is
desired to maximize the radius of the beam at the entry of
SRK28. This will reduce the minimum attainable beam radius
at the FFS entry, and, correspondingly, decrease scraping
losses. The described reconstruction technique makes it
possible to infer the radius of the beam and its divergence
angle at the entrance of solenoid #28 from a measurement of
the beam radius on the scintillator downstream of the solenoid
at several solenoid strengths.

The second issue concerns uncertainty about the initial
emittance of the beam produced by the NDCX-II ion source
and injector, which, again cannot be measured directly due to
limited diagnostic access. The same approach is applied to

infer the source emittance from a measurement of beam radius
on scintillator as a function of transport solenoid strength a
few lattice periods downstream of the injector. A general
formulation of the inverse problem and the method for solu-
tion is given below.

2.1. Inverse problem

The inverse problem can be described as follows. A beam
with an unknown initial radius and divergence angle at z ¼ 0
passes through a solenoid lens with a known magnetic field
profile. The magnetic field strength of the solenoid can be
varied. The radius of the beam versus the magnetic field of the
solenoid RL(B) is measured on a screen located at z ¼ L. Given
the measured RL(B), what are the initial radius r (z ¼ 0) and
divergence angle u (z ¼ 0)?

In general, solving an inverse problem requires a model
relating the unknown parameters, in this case R0 and U, to
measured quantities. We make the assumption that the
experimental beam obeys the RMS envelope equation:

d2R

dz2
¼�kðzÞ2RþQ

R
þ ε

2

R3
:

Here kðzÞ ¼ eBðzÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffi
8UbMi

p
is the focusing strength of the

solenoid with magnetic field BðzÞ, e is the electron charge, Mi

is the ion mass, and Ub is the kinetic energy of the ions. The

parameter Q ¼ IB
ffiffiffiffiffiffi
Mi

p
=4pε0

ffiffiffiffiffi
2e

p
V
3=2
B is the dimensionless

perveance and ε is the 4 � RMS unnormalized emittance, and
R and U are the 2 � RMS beam radius and divergence angle.
The perveance Q, which can be determined from the beam
current and energy, is assumed to be known and constant from
z ¼ 0 to z ¼ B. The emittance ε is treated as an unknown
constant parameter alongside the initial radius and divergence
angle (R0, U). Thus, given (R0, U, ε), the envelope equation
can be solved numerically for the beam radius RL at z ¼ L for a

Fig. 2. Example plots of a set of envelope trajectories through the last transport solenoid upstream of the FEPS. Different values of emittance (in units of cm$rad)

can reproduce experimental data.
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magnetic field B in the solenoid lens. For B(z), a hardeedge
profile is assumed (i.e. B(z) ¼ B0 for L1 < z < L2 and zero
elsewhere). The effective length of the solenoid l ¼ L2 e
L1 ¼ 16.6 cm is determined based on the experimental mea-
surements of B(z).

Fig. 2 shows examples of calculated envelope trajectories
R(z) at different values of the solenoid magnetic field. The
relative positions of the solenoid and the screen (z ¼ L)
correspond to the experimental location of the scintillator
downstream of the last transport solenoid. Given an initial set
of beam parameters (R0, U, ε), this model can be used to
calculate the radius of the beam on scintillator as a function of
solenoid field B, denoted as Renv

L ðBj½R0;U; ε�Þ. The inverse
problem can be solved by formulating an optimization prob-
lem to find ðR0;U; εÞ that minimizes the difference between
the measured and calculated beam radii as a function of B. For
this, the following “error function” is used:

JðR0;U; εÞ ¼
XN
i¼0

�
Rmeas
L ðBiÞ �Renv

L ðBij½R0;U; ε� Þ
Rmeas
L ðBiÞ

�2

:

Since Rmeas
L ðBÞ is measured for N values of magnetic field

Bi, a discrete sum is used in the above expression.
With a suitable definition of the beam radius vs. B field

from the scintillator data, a minimum of the error function
JðR0;U; εÞ can be found by numerical optimization methods.
The algorithm used in this work is Particle Swarm Optimi-
zation [7], although other methods are expected to work as
well. A particular advantage of Particle Swarm Optimization
is the simplicity of implementation. The algorithm does not
rely on calculating gradients of the input function, so the
output of any numerical calculation can be used to define J, a
numerical solution to the envelope equation modeling the
experimental lattice. Extending the optimization scheme to
higher dimensions (by letting perveance Q be a free parameter,
for example) is straightforward as well.

2.2. Defining beam radius from experimental data

Evaluating the error function JðR0;U; εÞ requires extracting
values for the beam radii from scintillator images taken at
different solenoid strengths. A measure that is commonly used
is RB ¼ 2RRMS, which has the advantage of corresponding to
the hard edge of the uniform or KV distribution [8]. However,
the RRMS measure of experimental beam profiles often can be
sensitive to the presence of wide “tails” or constant back-
ground that has to be subtracted from the measured distribu-
tion (note that analytically, RMS radius of a Lorentzian
distribution is undefined). Thus, obtaining RMS radius from a
scintillator image often requires subtracting some constant
background to artificially cut off the distribution, which can
make the inferred RMS radius sensitive to the background
assumption. This is especially problematic when a consistent
measure of radius is desired for a set of data with significant
variation of the intrinsic beam radius. Since integrated fluenceZ ∞

0

jðrÞrdrxconst for a constant beam current, the peak

brightness decreases with increasing the beam radius. Sub-
tracting a constant background to obtain RMS radius can
result in significant inconsistency in how the radius is defined
between profiles with small and large radii.

On NDCX-II, we found that the beam profiles j(r) were
reasonably self-similar under a transformation that “stretches”
the profile by a scalar magnification factor M:

jðrÞ/jðr,MÞ�M2:

This transformation, illustrated in Fig. 3(a), preserves the

total fluence: 2p
R
jðrÞrdr ¼ const. Fig. 3(b) plots a set of

transformed profiles illustrating their self-similarity. To find the
radii for a set of self-similar profiles, it is sufficient to define the
radiusRs for a single profile, towhich a valueM ¼ 1 is assigned.
For the remaining profiles,MðBÞ can be easily found from data
by taking the square root of the ratio of the peak intensity with

Fig. 3. (a) Schematic illustration of the self-similar transformation jðrÞ/jðr,MÞ=M2. (b) Beam profiles j(r) after the transformation jðrÞ/jðr,MÞ=M2 is applied,

where M is a scalar magnification factor. The plot shows that the shape of the transformed jðrÞ profiles is approximately the same, i.e. the jðrÞ profiles are self-

similar. Different colors correspond to different focusing strengths of the solenoid lens upstream of the scintillator, from B ¼ 0 T (#2, purple) to B ¼ 2.4 T (#13,

blue). (c) Beam radius vs. B-field strength in the upstream solenoid. The radius RðBÞ is determined from the self-similarity factorM as RðBÞ ¼ Rs,MðBÞ, where Rs

is the radius of the profile chosen as the “standard” profile with M ¼ 1.
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the peak intensity of the M ¼ 1 profile. Radius can then be
found as RðBÞ ¼ Rs,MðBÞ, as illustrated in Fig. 3(c).

3. Application to NDCX-II data

3.1. Case 1: finding optimal settings for the last 3
transport solenoids

At the end of the NDCX-II transport lattice, the beam is
launched through a 1-m-long plasma-filled drift section. In the
drift section, no transverse focusing forces are applied. Since
the space-charge of the beam should be well-neutralized by the
plasma, the beam is expected to propagate ballistically, with
its trajectory set by the envelope parameters at the exit of the
transport lattice. The envelope parameters (radius and diver-
gence angle) can be controlled by tuning the magnetic field
strengths of the final group of solenoids of the lattice. At the
end of the 1-m-long drift section, the beam enters the FFS with
a small (2 cm) bore radius. In the experiment, it was found that
significant particle loss of the beam at the entry or upstream of
the FFS occurred, leading to losses of charge on target. Thus,
it was necessary to find optimal B-field values for the last three
solenoids (#26e#28) that minimize scraping losses.

In the framework of the envelope model, particle loss
corresponds to the beam radius at the entrance of the FFS
being greater than the 2 cm bore radius. Since the space-
charge of the beam was expected to be well-neutralized,
scraping was attributed to finite beam emittance. Chromatic
aberration due to the intrinsic beam velocity spread on NDCX-
II was also considered, but the effect was estimated to be too
small to explain the measured scraping losses. For an
emittance-dominated and monochromatic beam, the minimum
attainable radius on target decreases with increasing initial
radius. This is evident from the envelope equation, which can
be solved exactly for the case of Q ¼ 0:

RðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 þ 2R0Uzþ

�
ε
2
�
R2
0 þU2

�
z2

q
:

The above equation gives the radius of the beam on target
at z ¼ L as a function of the initial envelope parameters at
z ¼ 0. One can find the minimum of Rðz ¼ LÞ with respect to
the initial angle U by solving dRðLÞ=dU ¼ 0. This yields a
minimum radius RðLÞmin ¼ εL=R0 with U ¼ �R0=L.

Since the minimum attainable radius is inversely propor-
tional to the initial radius R0, it was desired to tune the last
three transport solenoids so the beam enters the drift section
with a radius as close to the 4 cm transport radius as possible,
and with a divergence angle U ¼ R0=L.

In lieu of a direct divergence angle measurement, the
reconstruction technique described previously was applied to
infer the envelope parameters from measurements of the beam
radius versus the magnetic field in the last transport solenoid
(#28). The scintillator was positioned 34 cm downstream of
the exit of solenoid #28. The experimental arrangement of this
measurement is shown in Fig. 4. The envelope parameters are
reconstructed at the entry of the solenoid (z ¼ 0). Given the
beam envelope parameters at z ¼ 0, the envelope model can be
used to solve for the radius and divergence angle of the beam
at the exit of solenoid #28, making it possible to determine
whether the beam is on an optimal trajectory through the drift
section. If not, adjustments are made to the upstream solenoids
(#27 and #26), and the scan of solenoid #28 is repeated.

First, it was necessary to find the unknown emittance of the
beam. In order to determine a unique value of ε, it was found
that the measured Rmeas

L ðBÞ curve has to pass through a min-
imum. By increasing the strengths of solenoids #26 and #27
above their standard settings, a measurement of RLðBÞ shown
in Fig. 5(a) was produced, which passes through a minimum.
By applying the envelope reconstruction algorithm to this
data, the emittance of the beam was determined to be
ε ¼ 5.2 � 10�2 cm,rad. This value was found by solving the
3-D optimization problem, where the initial radius, divergence
angle, and emittance, were unknown. To confirm that the
found value of emittance is indeed unique, Fig. 5(b) plots the
minimum attainable error vs. choice of ε for the 2D optimi-
zation problem. One can see the presence of a minimum in the
error at ε ¼ 5.2 � 10�2 cm,rad.

Once the emittance of the beam had been determined, the
reconstruction algorithm was applied to another set of mea-
surements of RLðBÞ with decreased (standard) B-field values in
solenoids #26 and #27. This data is shown in Fig. 3(b). Using
the reconstruction algorithm, we can determine the trajectory
of the beam at the exit of solenoid #28, i.e. at the entrance of
the drift section. The radius of the beam was 3 cm and the
convergence angle was 0.043 rad. According to the analytic
formula derived previously, the optimal convergence angle

Fig. 4. Geometry of the measurement to infer the beam envelope parameters at the entry top of the last transport solenoid immediately upstream of the FEPS.
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would be Uopt ¼ R0=Lx 3 cm/100 cm ¼ 0.03 rad. However,

testing the effect of further tuning with the envelope model
showed that these experimental settings were close to optimal,
with the main cause of scraping being due to large beam
emittance.

The unnormalized measured emittance ε ¼ 5.2 �
10�2 cm,rad corresponded to a normalized emittance εnorm ¼
bε ¼ 12 mm$mrad. Since the beam underwent multiple ac-
celeration “kicks” on NDCX-II, the normalized emittance
served as a useful metric for comparing the beam emittances at
different locations in the beamline. Since the large measured
emittance resulted in significant losses of charge on target, it
became necessary to determine why the emittance of the beam
was so high and whether or not it could be reduced.

3.2. Case 2: measuring the plasma ion source emittance

Given the large value of emittance measured at the end of
the transport lattice discussed in the previous section, we are
motivated to attempt to determine the origin of the high beam
emittance. In order to infer the initial emittance of the beam at
the exit of the ion source, we installed a scintillator 134 cm

downstream of the source, after the third solenoid in the
accelerator. The envelope reconstruction technique was
applied to measure the source emittance in a similar manner to
the previous section.

After exiting the source, the ion beam passed through the
first three NDCX-II transport solenoids before it reached the
scintillator screen. The experimental setup is shown sche-
matically in Fig. 6(a). The B-field in the first transport so-
lenoid (#1) was set at 0.8 T. A lower magnetic field strength
resulted in significant losses of the beam current at the
measurement location. The field in the second transport so-
lenoid (#2) was varied for the scan. The B-field in solenoid
#3, which was located immediately upstream of the scintil-
lator, was set to zero. This was provided for the drift distance
so the effects of solenoid #2 on the beam trajectory would be
manifested.

The measured beam radius versus the B-field in solenoid #2
is shown in Fig. 6(b), together with the result of the envelope
reconstruction routine. Note that for this data set, the shapes of
the measured beam profiles at B ¼ 0 T were not self-similar
with the profile shapes at nonzero B-field values. Thus,
these data points were excluded from the inputs to the

Fig. 6. (a) Setup of the source emittance measurement. The scintillator was placed 134 cm downstream of the ion source. Solenoid #1 was set at 0.8 T to direct the

ion current from the source into the accelerator. The field in solenoid #2 was varied for the scan, while solenoid #3 was turned off to give the beam some drift

distance; (b) Measured beam radius vs. the B-field in solenoid #2.

Fig. 5. (a) Measured RLðBÞ at increased fields in solenoids #26 and #27. (b) Fit error vs. choice of emittance, showing a minimum at ε ¼ 5.2 � 10�2 cm,rad.
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reconstruction algorithm. For this measurement, the beam
energy was 150 keV and the beam current was 40 mA, cor-
responding to a perveance Q ~1 � 10�3. The inferred
unnormalized emittance of the beam was ε ¼ 1.4 � 10�1

cm,rad. The corresponding normalized emittance was
εnorm ¼ 12 mm,mrad, which is identical to the value of εnorm
measured at the entry of the drift section. This suggests that
the origin of the high beam emittance on NDCX-II may be due
to a higher-than-expected emittance of the beam from the ion
source and injector.

4. Conclusions

We formulate an inverse problem approach to reconstruct-
ing beam phase space in an accelerator experiment. It is shown
that 3 beam envelope parameters e radius, divergence angle,
and emittanceecan be deduced from a measurement of the
beam radius vs. solenoid strength with a numerical optimiza-
tion algorithm. This simple and general technique can be
applied on other experiments operating with beams that can be
reasonably well-described by the envelope equation, including
those with linacs and circular accelerators. The main benefit of
this approach is that beam parameters that cannot be measured
directly can be inferred with sufficient confidence.

The numerical reconstruction technique was developed on
the NDCX-II accelerator, which has intrinsically complex
beam dynamics due to simultaneous beam compression and
acceleration. This complexity makes NDCX-II a good plat-
form for investigating the utility of the inverse problem
approach. Based on our investigation, the main factor limiting
the fluence on target on NDCX-II is the operation of the ion
source and injector, which may be producing a beam pulse
with much higher normalized emittance (12 mm,mrad
normalized) than expected (~2 mm,mrad normalized). High
emittance limits the radial compressibility of the beam and
results in charge losses due to scraping of the beam on the
walls of the accelerator.

Reducing the emittance of the ion source can dramatically
improve the performance of the NDCX-II accelerator. Several
approaches can be attempted towards that end. The ion source
itself has a number of “knobs,” including the voltages on the

extraction and suppressor grids, as well as the voltage ratios in
the 135 kV injector. These control parameters of the ion source
can be optimized in an effort to reduce the source emittance.
With improved ion source performance, a significant increase
in target fluence can be readily expected on NDCX-II,
potentially enabling targets to be heated to warm dense mat-
ter conditions.
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